RADIATION OF AN INFINITE ISOTHERMAL CYLINDER WITH ACCOUNT OF SCATTERING

F. N. Lisin and I. F. Guletskaya UDC 536.3

The radiation problem of a cylinder filled by a radiating, absorbing, and scattering medium is treated. The transport equation is solved analytically within the P_1 approximation for an arbitrary scattering indicatrix by the spherical harmonic method.

The transport equation of radiant energy is written for gray emission in the form [1]

$$\mathbf{s}\nabla J + kJ = (\beta/4\pi) \int_{4\pi} P(\mathbf{s}; \mathbf{s}') J(r; \mathbf{s}) d\omega' + j.$$
(1)

Case and Zweifel [1] obtained equations in the P_1 approximation by the spherical harmonic method,

$$\nabla \psi_0 + (k - \bar{\mu} \bar{\beta}) \psi_1 = \frac{3}{4\pi} \int_{4\pi} s j d\omega, \qquad (2)$$

$$\operatorname{div} \psi_{1} + 3\alpha \psi_{0} = \frac{3}{4\pi} \int_{4\pi}^{j} j d\omega, \qquad (3)$$

where $\bar{\mu} = \frac{1}{4\pi} \int_{4\pi} (s; s') P(s; s') d\omega'$ is the average scattering cosine.

The quantity ψ_0 is proportional to the bulk density of radiant energy, and ψ_1 is proportional to the radiation flux density. For isotropic internal source functions and a constant density of the attenuated material the equation for ψ_0 is

$$\nabla^2 \psi_0 - 3k^2 (1 - \gamma) (1 - \gamma \bar{\mu}) \psi_0 = -k (1 - \gamma \bar{\mu}) j_0, \qquad (4)$$

where

$$j_0 = \frac{3}{4\pi} \int_{4\pi} j d\omega = 3\alpha \frac{\sigma_0 T^4}{\pi} .$$

For a cylinder with axial symmetry, Eq. (4) becomes

$$\frac{d^2\psi_0}{dr^2} + \frac{1}{r} \frac{d\psi_0}{dr} - 3k^2(1-\gamma)(1-\gamma\bar{\mu})\psi_0 = -k(1-\gamma\bar{\mu})j_0.$$
(5)

Introducing the optical width $\tau = \int_{0}^{r} k dr$, we rewrite (5) in the form

$$\frac{d^2\psi_0}{d\tau^2} + \frac{1}{\tau} \frac{d\psi_0}{d\tau} - \frac{\kappa^2}{k^2} \psi_0 = \frac{1 - \gamma \bar{\mu}}{k} \dot{I}_0, \qquad (6)$$

where $\varkappa_2 = 3k^2(1-\gamma)(1-\gamma\bar{\mu})$.

The cylinder walls are assumed to be cold and black. The Marshak boundary conditions are then

$$\int_{-1}^{0} [\psi_0(\tau_0) + \mu_i \psi_1(\tau_0)] \mu d\mu = \psi_0(\tau_0) - \frac{2}{3} \psi_i(\tau_0) = 0.$$
⁽⁷⁾

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 1, pp. 141-144, July, 1978. Original article submitted June 23, 1977.

 $\begin{array}{c} \varepsilon \\ q g \\$

Fig. 1. Emissivities of an isothermal cylinder for $\bar{\mu} = 0.5$ and various γ : 1) $\gamma = 0.2$; 2) 0.4; 3) 0.6; 4) 0.8.

Fig. 2. Effect of average scattering cosine $\bar{\mu}$ on emissivity.

Fig. 3. Effect of γ on emissivity for various $\overline{\mu}$ and $\tau_0 = 4$: 1) $\overline{\mu} = 0.2$; 2) 0.4; 3) 0.8.

TABLE 1. Emissivity of an Infinite Cylinder

t _o	3	
	by Nusselt	by Eq. (12)
0,1 0,2 0,4	0,1767 0,3170 0,5200	0,179 0,328 0,546
1,0	0,8142	0,854

The following symmetry conditions are assigned on the cylinder axis:

$$\frac{d\psi_0}{d\tau} = 0; \quad \psi_i = 0 \quad \text{at} \quad \tau = 0.$$
(8)

Equation (6) is the modified Bessel equation. Its general solution is

$$\psi_0 - (1 - \gamma \overline{\mu}) \, i_0 \, \frac{k}{\kappa^2} = A I_0 \, \left(\frac{\kappa}{k} \, \tau \right) + B K_0 \, \left(\frac{\kappa}{k} \, \tau \right), \tag{9}$$

where I_0 is the zero-order Bessel function of a pure imaginary argument, and K_0 is the zero-order Bessel function of the first kind of a pure imaginary argument.

Since ψ_0 cannot be infinite at $\tau = 0$, the coefficient B in (9) must be set equal to zero.

Determining A from the Marshak boundary conditions (7), we obtain

$$\psi_0(\tau) - \frac{\sigma_0 T^4}{\pi} = \left[\frac{2}{3} \psi_1(\tau_0) - \frac{\sigma_0 T^4}{\pi}\right] \frac{I_0\left(\frac{\varkappa}{k}\tau\right)}{I_0\left(\frac{\varkappa}{k}\tau_0\right)},$$
(10)

while the quantity ψ_1 at the boundary $\tau = \tau_0$ acquires the value

$$\psi_{1}(\tau_{0}) = \frac{3\alpha \frac{1}{\varkappa} \frac{\sigma_{0}T^{4}}{\pi}}{1 + \frac{2\alpha}{\varkappa} \frac{I_{1}(\varkappa\tau_{0}/k)}{I_{0}(\varkappa\tau_{0}/k)}} \frac{I_{1}\left(\frac{\varkappa}{k}\tau_{0}\right)}{I_{0}\left(\frac{\varkappa}{k}\tau_{0}\right)}.$$
(11)

The emissivity is determined by the expression

$$\varepsilon = 1 - \frac{1 - \frac{2\alpha}{\varkappa} \frac{I_1(\pi\tau_0/k)}{I_0(\pi\tau_0/k)}}{1 + \frac{2\alpha}{\varkappa} \frac{I_1(\pi\tau_0/k)}{I_0(\pi\tau_0/k)}}.$$
(12)

The form of the scattering indicatrix is determined by the quantity $\bar{\mu}$. For a spherical scattering indicatrix P(l; l') = 1, scattering is isotropic and $\bar{\mu} = 0$. Cylinder emissivities were calculated by Eq. (12) for various τ_0 , γ , and $\bar{\mu}$.

The results of these calculations are given in Figs. 1-3.

As $\tau_0 \rightarrow \infty$, the solution (12) transforms to the solution [2] for a semiinfinite layer:

$$\varepsilon = \frac{4\sqrt{1-\gamma}}{2\sqrt{1-\gamma}+\sqrt{3}\sqrt{1-\gamma\bar{\mu}}}.$$
(13)

Emissivities were calculated by Eq. (12) for $\beta = 0$. Table 1 provides the results of the calculation and a comparison with Nusselt's data as chosen from [3].

The larger the optical width of the medium and the closer to unity the ratio of the scattering coefficient to the attenuation coefficient, the more accurate the P_1 approximation is.

NOTATION

J, radiation intensity; r, radius; k, attenuation coefficient; β , scattering coefficient; α , absorption coefficient; P(s; s'), scattering indicatrix; T, temperature; ε , emissivity; γ , scattering-to-attenuation-factor ratio.

LITERATURE CITED

- 1. K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley (1967).
- 2. V. I. Polyakov and A. I. Rumynskii, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3 (1968).
- 3. A. S. Nevskii, Radiative Heat Transfer in Ovens and Furnaces [in Russian], Metallurgiya, Moscow (1971)