RADIATION OF AN INFINITE ISOTHERMAL CYLINDER

WITH ACCOUNT OF SCATTERING

F. N. Lisin and I. F. Guletskaya

The radiation problem of a cylinder filled by a radiating, absorbing, and scattering medium is treated. The transport equation is solved analytically within the P_{1} approximation for an arbitrary scattering indicatrix by the spherical harmonic method.

The transport equation of radiant energy is written for gray emission in the form [1]

$$
\begin{equation*}
\mathrm{s} \nabla^{J}+k J=(\beta / 4 \pi) \int_{4 \pi} P\left(\mathrm{~s} ; \mathrm{s}^{\prime}\right) J(r ; \mathrm{s}) d \omega^{\prime}+j \tag{1}
\end{equation*}
$$

Case and Zweifel [1] obtained equations in the P_{1} approximation by the spherical harmonic method,

$$
\begin{gather*}
\nabla \psi_{0}+(k-\mu \bar{\beta}) \psi_{1}=\frac{3}{4 \pi} \int_{4 \pi} s j d \omega \tag{2}\\
\operatorname{div} \psi_{1}+3 \alpha \psi_{0}=\frac{3}{4 \pi} \int_{4 \pi} j d \omega \tag{3}
\end{gather*}
$$

where $\bar{\mu}=\frac{1}{4 \pi} \int_{4 \pi}\left(\mathbf{s} ; \mathbf{s}^{\prime}\right) P\left(\mathbf{s} ; \mathbf{s}^{\prime}\right) d \omega^{\prime}$ is the average scattering cosine.

The quantity ψ_{0} is proportional to the bulk density of radiant energy, and ψ_{1} is proportional to the radiation flux density. For isotropic internal source functions and a constant density of the attenuated material the equation for ψ_{0} is

$$
\begin{equation*}
\nabla^{2} \psi_{0}-3 k^{2}(1-\gamma)(1-\gamma \bar{\mu}) \psi_{0}=-k(1-\gamma \bar{\mu}) j_{0} \tag{4}
\end{equation*}
$$

where

$$
j_{0}=\frac{3}{4 \pi} \int_{4 \pi} j d \theta=3 \alpha \frac{\sigma_{0} T^{4}}{\pi}
$$

For a cylinder with axial symmetry, Eq. (4) becomes

$$
\begin{equation*}
\frac{d^{2} \psi_{\theta}}{d r^{2}}+\frac{1}{r} \frac{d \psi_{0}}{d r}-3 k^{2}(1-\gamma)(1-\gamma \bar{\mu}) \psi_{0}=-k(1-\gamma \bar{\mu}) j_{0} . \tag{5}
\end{equation*}
$$

Introducing the optical width $\tau=\int_{0}^{r} k d r$, we rewrite (5) in the form

$$
\begin{equation*}
\frac{d^{2} \psi_{0}}{d \tau^{2}}+\frac{1}{\tau} \frac{d \psi_{0}}{d \tau}-\frac{x^{2}}{k^{2}} \psi_{0}=\frac{1-\gamma \bar{\mu}}{k} j_{0} \tag{6}
\end{equation*}
$$

where $x_{2}=3 \mathrm{k}^{2}(1-\gamma)(1-\gamma \bar{\mu})$.
The cylinder walls are assumed to be cold and black. The Marshak boundary conditions are then

$$
\begin{equation*}
\int_{-1}^{0}\left[\psi_{0}\left(\tau_{0}\right)+\mu_{1} \psi_{1}\left(\tau_{0}\right)\right] \mu d \mu=\psi_{0}\left(\tau_{0}\right)-\frac{2}{3} \psi_{1}\left(\tau_{0}\right)=0 \tag{7}
\end{equation*}
$$

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 1, pp. 141-144, July, 1978. Original article submitted June $23,1977$.

Fig. 1. Emissivities of an isothermal cylinder for $\vec{\mu}=0.5$ and various γ : 1) $\gamma=0.2$; 2) 0.4 ; 3) 0.6 ; 4) 0.8 .

Fig. 2. Effect of average scattering cosine $\bar{\mu}$ on emissivity.

Fig. 3. Effect of γ on emissivity for various $\bar{\mu}$ and

$$
\left.\left.\tau_{0}=4 ; \text { 1) } \bar{\mu}=0.2 ; 2\right) 0.4 ; 3\right) 0.8
$$

TABLE 1. Emissivity of an Infinite Cylinder

τ_{0}	ε	
	by Nusselt	by Eq. (12)
0,1	0,1767	0,179
0,2	0,3170	0,328
0,4	0,5200	0,546
1,0	0,8142	0,854

The following symmetry conditions are assigned on the cylinder axis:

$$
\begin{equation*}
\frac{d \psi_{0}}{d \tau}=0 ; \quad \psi_{1}=0 \quad \text { at } \quad \tau=0 \tag{8}
\end{equation*}
$$

Equation (6) is the modified Bessel equation. Its general solution is

$$
\begin{equation*}
\psi_{0}-(1-\gamma \bar{\mu}) j_{0} \frac{k}{x^{2}}=A I_{0}\left(\frac{\varkappa}{k} \tau\right)+B K_{0}\left(\frac{\kappa}{k} \tau\right) \tag{9}
\end{equation*}
$$

where I_{0} is the zero-order Bessel function of a pure imaginary argument, and K_{0} is the zero-order Bessel function of the first kind of a pure imaginary argument.

Since ψ_{0} cannot be infinite at $\tau=0$, the coefficient B in (9) must be set equal to zero.
Determining A from the Marshak boundary conditions (7), we obtain

$$
\begin{equation*}
\psi_{0}(\tau)-\frac{\sigma_{0} T^{4}}{\pi}=\left[\frac{2}{3} \psi_{1}\left(\tau_{0}\right)-\frac{\sigma_{0} T^{4}}{\pi}\right] \frac{I_{0}\left(\frac{\varkappa}{k} \tau\right)}{I_{0}\left(\frac{\varkappa}{k} \tau_{0}\right)}, \tag{10}
\end{equation*}
$$

while the quantity ψ_{1} at the boundary $\tau=\tau_{0}$ acquires the value

$$
\begin{equation*}
\psi_{1}\left(\tau_{0}\right)=\frac{3 \alpha \frac{1}{x} \frac{\sigma_{0} T^{4}}{\pi}}{1+\frac{2 \alpha}{\varkappa} \frac{I_{1}\left(x \tau_{0} / k\right)}{I_{0}\left(x \tau_{0} / k\right)}}-\frac{I_{1}\left(\frac{\kappa}{k} \tau_{0}\right)}{I_{0}\left(\frac{\varkappa}{k} \tau_{0}\right)} . \tag{11}
\end{equation*}
$$

The emissivity is determined by the expression

$$
\begin{equation*}
\varepsilon=1-\frac{1-\frac{2 \alpha}{x} \frac{I_{1}\left(x \tau_{0} / k\right)}{I_{0}\left(x \tau_{0} / k\right)}}{1+\frac{2 \alpha}{x} \frac{I_{1}\left(x \tau_{0} / k\right)}{I_{0}\left(x \tau_{0} / k\right)}} \tag{12}
\end{equation*}
$$

The form of the scattering indicatrix is determined by the quantity $\bar{\mu}$. For a spherical scattering indica$\operatorname{trix} \mathrm{P}\left(l ; l^{\prime}\right)=1$, scattering is isotropic and $\bar{\mu}=0$. Cylinder emissivities were calculated by Eq. (12) for various τ_{0}, γ, and $\bar{\mu}$.

The results of these calculations are given in Figs. 1-3.
As $\tau_{0} \rightarrow \infty$, the solution (12) transforms to the solution [2] for a seminfinite layer:

$$
\begin{equation*}
\varepsilon=\frac{4 \sqrt{1-\gamma}}{2 \sqrt{1-\gamma}+\sqrt{3} \sqrt{1-\gamma^{\bar{\mu}}}} . \tag{13}
\end{equation*}
$$

Emissivities were calculated by Eq. (12) for $\beta=0$. Table 1 provides the results of the calculation and a comparison with Nusselt's data as chosen from [3].

The larger the optical width of the medium and the closer to unity the ratio of the scattering coefficient to the attenuation coefficient, the more accurate the P_{1} approximation is.

NOTATION

J, radiation intensity; r, radius; k, attenuation coefficient; β, scattering coefficient; α, absorption coefficient; P(s; s'), scattering indicatrix; T, temperature; ε, emissivity; γ, scattering-to-attenuation-factor ratio.

LITERATURE CITED

1. K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley (1967).
2. V. I. Polyakov and A. I. Rumynskii, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3 (1968).
3. A. S. Nevskii, Radiative Heat Transfer in Ovens and Furnaces [in Russian], Metallurgiya, Moscow (1971)
